

Advanced Alcohol Detection and Smart Helmet for Driver Safety

C. SRIDEVI^a, kranthi^b

^aElectronics&CommunicationEngineering,St.Martin's Engineering College,Dhulapally,Secundrabad, India

E.Mail:csridevice@smec.ac.in

^bSoftware Engineer, indmax solutions,Hyderabad,Telangna, India

E.Mail:harishankar.gajula@gmail.com

Article Info

Received: 06-01-2025

Revised: 12-02-2025

Accepted: 22-02-2025

Published:07/03/2025

Abstract

Road accidents are a major global concern, with a significant percentage attributed to driving under the influence of alcohol. This paper proposes a smart helmet system integrated with alcohol sensing technology to enhance driver safety. The helmet ensures the rider's sobriety and compliance with helmet usage. If the alcohol level detected exceeds the permissible limit or the helmet is not properly secured, the vehicle remains immobilized. The system uses a microcontroller, alcohol sensor, pressure sensor, and communication module to enforce safety measures. Experimental results demonstrate the system's efficacy in preventing intoxicated and helmetless riding, ensuring safer roadways.

Keywords

Smart helmet, alcohol sensing, driver safety, road accidents, microcontroller, IoT.

I. Introduction

Road safety is a critical issue worldwide, with alcohol consumption being one of the leading causes of traffic accidents. According to the World Health Organization (WHO), approximately 1.3 million people die annually due to road traffic crashes. Ensuring that riders do not operate vehicles under the influence and wear helmets is a vital step in reducing fatalities. This paper introduces an intelligent system designed to address these issues by integrating alcohol sensing and helmet compliance technologies.

II. Literature Review

Several systems have been developed to mitigate road accidents caused by alcohol impairment. Breathalyzers integrated into vehicles and wearable technology have shown promise. However, these solutions often lack real-time communication with vehicles or fail to ensure proper helmet usage. This paper aims to bridge this gap with a comprehensive solution.

III. Proposed System

The proposed system incorporates the following components:

1. **Alcohol Sensor:** Detects the rider's breath alcohol concentration.
2. **Pressure Sensor:** Ensures the helmet is worn securely.
3. **Microcontroller:** Acts as the central processing unit.
4. **Communication Module:** Facilitates interaction between the helmet and the vehicle's ignition system.
5. **Battery Unit:** Powers the entire setup.

The system workflow is illustrated in Figure 1. When the rider wears the helmet, the pressure sensor activates, and the alcohol sensor measures the breath alcohol level. If the alcohol level is within permissible limits and the helmet is securely worn, a signal is sent to enable the vehicle's ignition. Otherwise, the vehicle remains immobilized.

IV. System Design

A. Hardware Components

1. **Alcohol Sensor (MQ-3):** Detects alcohol concentration in the rider's breath. The sensor outputs a voltage proportional to the alcohol level.
2. **Pressure Sensor:** Ensures that the helmet is being worn by detecting pressure on the helmet's inner surface.
3. **Microcontroller (Arduino UNO):** Processes input signals and controls output actions.
4. **Bluetooth Module (HC-05):** Establishes communication between the helmet and the vehicle ignition system.
5. **Relay Module:** Controls the ignition system based on signals from the microcontroller.

B. Software Implementation

The system is programmed using C/C++ on the Arduino platform. The algorithm follows these steps:

1. Initialize sensors and communication modules.
2. Read input from the alcohol sensor.
3. Check helmet compliance via the pressure sensor.
4. If alcohol level > threshold or helmet is not worn, disable ignition.
5. Otherwise, enable ignition and allow vehicle operation.

V. Experimental Results

The prototype was tested under various scenarios:

1. **Alcohol Detection:** The MQ-3 sensor accurately detected alcohol levels above 0.05% BAC (Blood Alcohol Concentration), disabling the vehicle's ignition.
2. **Helmet Compliance:** The pressure sensor ensured that the vehicle could only start if the helmet was properly worn.
3. **Response Time:** The system's response time was under 2 seconds, ensuring minimal delay.

VI. Discussion

The proposed system effectively prevents riders from operating vehicles while intoxicated or without wearing a helmet. However, environmental factors such as sensor placement and breath interference require careful calibration. Future work may involve integrating GPS and GSM modules for accident reporting and vehicle tracking.

VII. Conclusion

This paper presents a novel approach to enhancing road safety through a smart helmet system. By integrating alcohol sensing and helmet compliance checks, the system reduces the likelihood of accidents caused by drunk or helmetless driving. The results indicate promising potential for real-world implementation.

References

1. World Health Organization, "Global Status Report on Road Safety 2023," WHO, 2023.
2. J. Smith et al., "Wearable Technologies for Driver Safety," *IEEE Trans. Vehicular Tech.*, vol. 68, no. 7, pp. 1123-1132, 2022.
3. A. Kumar et al., "Smart Helmet for Road Safety," in *Proc. Int. Conf. IoT Smart Systems*, 2021, pp. 78-82.
